Q. The equation of plane of a $\triangle A B C$ is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=\lambda$ and lengths of sides of $\triangle A B C$ opposite to vertices A, B, C are respectively $\mathrm{p}, \mathrm{q}, \mathrm{r}$. Mid points of sides of $\triangle \mathrm{ABC}$ lies on coordinate axes. If $\mathrm{a}^2=\frac{\mathrm{q}^2+\mathrm{r}^2-\mathrm{p}^2}{2}, \mathrm{~b}^2=\frac{\mathrm{p}^2+\mathrm{r}^2-\mathrm{q}^2}{2}$ and $\mathrm{c}^2=\frac{\mathrm{p}^2+\mathrm{q}^2-\mathrm{r}^2}{2}$ then value of $\left|\frac{1}{\lambda}\right|$ is
JEE AdvancedJEE Advanced 2019
Solution:
Correct answer is '2.00'