Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The equation of A.C. voltage is E=220 sin (ω t+π / 6) and the A.C. current is I=10 sin (ω t-π / 6). The average power dissipated is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The equation of A.C. voltage is $E=220 \sin (\omega t+\pi / 6)$ and the A.C. current is $I=10 \sin (\omega t-\pi / 6)$. The average power dissipated is :
VITEEE
VITEEE 2016
A
150W
20%
B
550W
40%
C
250W
20%
D
50W
20%
Solution:
We know that, $ Z = \frac{E_0}{I_0}$
Given, $E_0 = 220V $ and $I_0 = 10 A$
so $Z = \frac{220}{10} = 22 \, ohm$
$ \phi =\left[\frac{\pi}{6} - \left(-\frac{ \pi }{6}\right)\right] = \frac{\pi}{3}$
$ p_{a} = \frac{E_{0}}{\sqrt{2} } \times\frac{I_{0}}{\sqrt{2}} \times\cos \phi$
$ = \frac{220}{\sqrt{2}} \times\frac{10}{\sqrt{2}} \times\cos\frac{\pi }{3} = 550\, W $