Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation $ a\text{ }cos \theta +b\text{ }sin \theta =c $ has a solution, when $ a $ , $ b $ and $ c $ are real numbers such that:

KEAMKEAM 2004

Solution:

The given equation is
$ a\text{ }cos\theta +b\text{ }sin\theta =c $
Since, $ \sqrt{{{a}^{2}}-{{b}^{2}}}\le a\cos \theta +b\sin \theta \le \sqrt{{{a}^{2}}+{{b}^{2}}} $
$ \Rightarrow $ $ {{c}^{2}}\le \sqrt{{{a}^{2}}+{{b}^{2}}} $