The energy of second Bohr orbit of hydrogen atom $(E_2)$ is $-328\,kJ \,mol^{−1}$ because
$E_{2}=-\frac{1312}{2^{2}}kJ\,mol^{-1}$
$\therefore E_{n}=-\frac{1312}{n^{2}}kJ\,mol^{-1}$
If $n=4$
$\therefore E_{4}=-\frac{1312}{4^{2}}\,kJ\,mol^{-1}$
$=-82\,kJ\,mol^{-1}$