Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The energy of an electron in an orbit of hydrogen like ion with an orbit radius of $52.9\, pm$ in $J$ is
(ground state energy of electron in hydrogen atom is $ - 2.18 \times 10^{-18} J$)

AP EAMCETAP EAMCET 2019

Solution:

Given,

Orbit radius $=52.9 \,pm$

Ground state energy of electron in hydrogen atom

$=-2.18 \times 10^{-18}\, J$

$r_{n} =r_{0} \times \frac{n^{2}}{Z} $

$52.9\, pm=52.9 \,pm \times \frac{n^{2}}{Z}$

$ \Rightarrow \frac{n^{2}}{Z}=1$ or $n^{2}=Z$

From energy,

$E_{n} =E_{0} \times \frac{Z^{2}}{n^{2}} $

$\Rightarrow E_{n} =-2.18 \times 10^{-18} \times \frac{n^{4}}{n^{2}} $

$E_{n} =-2.18 \times 10^{-18} \times n^{2}$

$\left(\because n^{2}=Z\right)$

$E_{n}=-2.18 \times 10^{-18} \times n^{2}$

If $n=2$, from given option, then

$E_{n}=4 \times-2.18 \times 10^{-18}$

$=-8.72 \times 10^{-18} \,J$