Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
The energies of an electron in first orbit of He+ and in third orbit of Li2+ in J are respectively
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The energies of an electron in first orbit of $He^{+}$ and in third orbit of $Li^{2+}$ in $J$ are respectively
AP EAMCET
AP EAMCET 2019
A
$ - 8.72 \times 10^{-18} , - 2.18 \times 10^{-18}$
100%
B
$ - 8.72 \times 10^{-18} , - 1.96 \times 10^{-17}$
0%
C
$ - 1.96 \times 10^{-17} , - 2.18 \times 10^{-18}$
0%
D
$ - 8.72 \times 10^{-17} , - 1.96 \times 10^{-17}$
0%
Solution:
Use relation:
$E_{n}=-2.18 \times 10^{-18} \cdot \frac{Z^{2}}{n^{2}} J / ion$
where,
$E_{n}=$ energy of an electron in $n$ th orbit
$Z=$ atomic number,
$n=$ orbit number
For helium ion $\left( He ^{+}\right)$
$ Z =2, n=1$
$ \therefore E_{n} =-2.18 \times 10^{-18} \times \frac{2^{2}}{1^{2}} $
$=-8.72 \times 10^{-18} J $
For lithium ion $\left( Li ^{2+}\right)$
$Z=3, n=3$
$ \therefore E_{n} =-2.18 \times 10^{-18} \times \frac{3^{2}}{3^{2}}$
$=-2.18 \times 10^{-18} J$