$\frac{1}{\lambda} =R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) Z^{2} $ $=R\left(\frac{1}{(1)^{2}}-\frac{1}{(2)^{2}}\right) Z^{2} $
$\frac{1}{\lambda}=\frac{3}{4} R Z^{2}$
$\therefore \lambda \propto \frac{1}{Z^{2}}$
$\therefore $ For shortest $\lambda, Z$ must be maximum, which is for $Li ^{2+}$.