Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The electric field of a plane electromagnetic wave is given by $\vec{E} = E_0 \hat{i} \cos (kz) \cos (\omega t)$
The corresponding magnetic field $\vec{B}$ is then given by :

JEE MainJEE Main 2019Electromagnetic Waves

Solution:

$\because \overrightarrow{ E } \times \overrightarrow{ B }|| \overrightarrow{ v }$
Given that wave is propagating along positive $z$ -axis and $\overrightarrow{ E }$ along positive $x$ -axis. Hence $\vec{B}$ along $y$ -axis. From Maxwel equation $\overrightarrow{ V } \times \overrightarrow{ E }=-\frac{\partial B }{\partial t }$
i.e. $\frac{\partial E }{\partial Z }=-\frac{\partial B }{\partial t } \operatorname{andB}_{0}=\frac{ E _{0}}{ C }$
so, $\overrightarrow{ B }=\frac{\overrightarrow{ E _{0}}}{ c } \hat{ j } \sin ( k z ) \cos (\omega t )$