Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The electric current in a circuit is given by $i=i_{0}(t / \tau)$ for same time. The rms current for the period $t=0$ to $t=\tau$ is

Alternating Current

Solution:

As, $i =i_{0}(t / \tau)$
$i^{2} =\frac{\int\limits_{0}^{\tau} i^{2} d t}{\tau}=\frac{\int\limits_{0}^{\tau} i_{0}^{2}(t / \tau)^{2} d t}{\tau}$
$=\frac{i_{0}^{2}}{\tau^{3}} \int\limits_{0}^{\tau} t^{2} d t=\frac{i_{0}^{2}}{\tau^{3}} \times \frac{\tau^{3}}{3}=\frac{i_{0}^{2}}{3}$
Thus, $i_{ \text{rms }}=\sqrt{i^{2}}=\sqrt{\frac{i_{0}^{2}}{3}}=\frac{i_{0}}{\sqrt{3}}$