Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The eccentricity of the ellipse which meets the straight line $\frac{x}{7}+\frac{y}{2}=1$ on the axis of $x$ and the straight line $\frac{x}{3}-\frac{y}{5}=1$ on the axis of $y$ and whose axes lie along the axes of coordinates is

Conic Sections

Solution:

Line $\frac{x}{7}+\frac{y}{2}=1$ meet $x$-axis at, $y=0$
$\Rightarrow x=7$
line $\frac{x}{3}-\frac{y}{5}=1$ meet $y$-axis at $ x=0 \Rightarrow y=-5$
$\therefore$ ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through $(7,0)$ and $(0,-5)$
hence $\frac{49}{a^2}+0=1 \Rightarrow a^2=49$
$0+\frac{25}{b^2}=1 \Rightarrow b^2=25$
$\therefore \frac{x^2}{49}+\frac{y^2}{25}=1 \Rightarrow e=\sqrt{1-\frac{25}{49}}$