Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The domain of the real valued function $ f(x)=\sqrt{1-2x}+2{{\sin }^{-1}}\left( \frac{3x-1}{2} \right) $ is

KEAMKEAM 2007Inverse Trigonometric Functions

Solution:

The given function is $ f(x)=\sqrt{1-2x}+2{{\sin }^{-1}}\left( \frac{3x-1}{2} \right) $
For domain of $ \sqrt{1-2x,}1-2x\ge 0 $
$ \Rightarrow $ $ 1\ge 2x\Rightarrow x\le \frac{1}{2} $
$ \Rightarrow $ $ x\in \left( -\infty ,\frac{1}{2} \right] $ and for domain of $ 2{{\sin }^{-1}}\left( \frac{3x-1}{2} \right), $ $ -1\le \frac{3x-1}{2}\le 1 $
$ \Rightarrow $ $ -2\le 3x-1\le 2 $
$ \Rightarrow $ $ -2+1\le 3x\le 2+1 $
$ \Rightarrow $ $ -1\le 3x\le 3 $
$ \Rightarrow $ $ -\frac{1}{3}\le x\le 1 $
$ \therefore $ Domain of $ f(x)=\left[ -\frac{1}{3},\frac{1}{2} \right] $