Thank you for reporting, we will resolve it shortly
Q.
The domain of the function $ y=\frac{1}{\sqrt{|x|-x}} $ is:
Jharkhand CECEJharkhand CECE 2003
Solution:
Given, $y=\frac{1}{\sqrt{|x|-x}}$
When $x \geq 0 \,\,y=\frac{1}{\sqrt{x-x}}=\infty$ (not defined)
When $x < 0 \,\,y=\frac{1}{\sqrt{-x-x}}=\frac{1}{\sqrt{-2 x}} $
$\therefore $ Given function is defined for every negative values of $x$ .
$ \therefore $ Required domain is $(-\infty, 0)$.