If $x \geq 0$, then $[x]$ is an integer part of $x$
Hence $x^{2} \geq[x]^{2}$ and $f(x)=\sqrt{x^{2}-[x]^{2}}$ is well-defined.
If $x<0$ say $x=-a$ where $a$ is a positive number,
then $[x]=-([a]+1)$.
Hence, $x^{2}<[x]^{2}$ and the function $f(x)=\sqrt{x^{2}-[x]^{2}}$ is not defined.
Therefore the domain of the function is $[0, \infty)$.