Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The domain of the function $f ( x )=\frac{\operatorname{arc} \cot x }{\sqrt{ x ^2-\left[ x ^2\right]}}$, where $[ x ]$ denotes the greatest integer not greater than $x$, is :

Inverse Trigonometric Functions

Solution:

$x^2-\left[x^2\right]=\left\{x^2\right\}>0 ;$ but $0 \leq\{y\}<1 \Rightarrow\left\{x^2\right\} \neq 0 \Rightarrow x \neq \pm \sqrt{n}$