Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The domain of the function $f ( x )=\sqrt{\log _{1 / 2}\left(\log _5\left(\left[ x ^2\right]-3\right)\right)}$ is
[Note: Where $[ k ]$ denotes greatest integer function less than or equal to $k$ ]

Relations and Functions - Part 2

Solution:

$f ( x )=\sqrt{\log _{1 / 2} \log _5\left(\left[ x ^2\right]-3\right)} $
$0 \leq \log _{1 / 2} \log _5\left(\left[ x ^2\right]-3\right)$
$\Rightarrow 0<\log _5\left(\left[ x ^2\right]-3\right) \leq 1$
$\Rightarrow 1<\left[x^2\right]-3 \leq 5$
$4<\left[ x ^2\right] \leq 8$
$5 \leq x ^2<9$
$x \in(-3,-\sqrt{5}] \cup[\sqrt{5}, 3) .$