Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The domain of the function $f$ defined by $f\left(x\right)=\frac{1}{\sqrt{x-\left|x\right|}}$ is

Relations and Functions

Solution:

Given that $f\left(x\right)=\frac{1}{\sqrt{x-\left|x\right|}}$
where $x-|x| = \begin{cases} x-x=0, & \text{if $x\ge0$} \\[2ex] x-(-x)=2x, & \text{if $x<0$} \end{cases}$
Thus $\frac{1}{\sqrt{x-\left|x\right|}}$ is not defined for any $x \in R$.
Hence $f$ is not defined for any $x \in R$
i.e., domain of $f=\left\{\phi\right\}$.