Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The domain of definition of $ {{x}^{3}}-\left( \frac{9}{2}+\sqrt{5} \right){{x}^{2}}+\left( \frac{9\sqrt{5}}{2}+5 \right)x-5\sqrt{5}=0 $ , where $ {{x}^{3}}+\left( \frac{9}{2}+\sqrt{5} \right){{x}^{2}}-\left( \frac{9\sqrt{5}}{2}+5 \right)x-5\sqrt{5}=0 $ denotes the greatest integer function, is

JamiaJamia 2015

Solution:

$ 5km/h $ is defined, if $ \frac{30}{4}km/h $ $ {{m}_{1}}\times {{m}_{2}} $ $ \frac{{{\lambda }_{1}}}{{{\lambda }_{2}}} $ $ \sqrt{\frac{{{m}_{2}}}{{{m}_{1}}}} $ $ \frac{{{m}_{2}}}{{{m}_{1}}} $ $ \frac{{{m}_{1}}}{{{m}_{2}}} $ $ I $ $ 5V $ $ {{l}_{AC}}=\sqrt{2}{{l}_{EF}} $ and $ {{l}_{AC}}={{l}_{EF}} $ $ \sqrt{2}{{l}_{AC}}={{l}_{EF}} $ $ {{l}_{AD}}=4{{l}_{EF}} $ and $ O=\overline{X+Y} $ $ O=\overline{XY} $ $ O=\overline{X}.\overline{Y} $