Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The domain of definition of the function $y=3e^{\sqrt{x^{2} - 1}}log \left(x - 1\right)$ is

NTA AbhyasNTA Abhyas 2020

Solution:

$x^{2}-1\geq 0$
$\Rightarrow x^{2}\geq 1$
$\Rightarrow x\in \left(- \infty ​ , \, - 1\right]\cup\left[1 , \infty\right)\ldots \ldots .\left(\right.1\left.\right)$
and $x-1>0$
$\Rightarrow x>1$
$\Rightarrow x\in \left(1 , \, \infty\right)\ldots \ldots \left(2\right)$
From 1 and 2
$x\in \left(\right.1, \, \infty\left.\right)$