Thank you for reporting, we will resolve it shortly
Q.
The domain and range of real function $f$ defined by $f\left(x\right) =\sqrt{x-1}$ is given by
Relations and Functions
Solution:
Given, $f\left(x\right) =\sqrt{x-1}$
$f\left(x\right)$ is defined when $x - 1 \ge 0$
$\Rightarrow x \ge 1$
$\therefore D_{f} = [1, \infty)$
For $x \ge 1$, we have $x- 1 \ge 0$
$\Rightarrow \sqrt{x-1} \ge 0$
$\Rightarrow f\left(x\right) \ge 0$
$\therefore f\left(x\right)$ can take all real values greater than or equal to $0$.
$\therefore R_{f} = [0, \infty)$