Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The distance of centre of mass from end $A$ of a one dimensional rod ( $AB )$ having mass density $\rho=\rho_0\left(1-\frac{x^2}{L^2}\right) kg / m$ and length $L$ (in meter) is $\frac{3 L }{\alpha} m$. The value of $\alpha$ is .....(where $x$ is the distance form end $A$)

JEE MainJEE Main 2022System of Particles and Rotational Motion

Solution:

image
$dm =\lambda \cdot dx =\lambda_0\left(1-\frac{ x ^2}{\ell^2}\right)$
$ X _{ cm }=\frac{\int xdm }{\int dm _{\ell}}$
$=\frac{\lambda_0 \int\limits_0^{\ell}\left( x -\frac{ x ^3}{\ell^2}\right) dx }{\ell}=\frac{\frac{\ell^2}{2}-\frac{\ell^4}{4 \ell^2}}{\int\limits_0^{\ell} \lambda_0\left(1-\frac{ x ^2}{\ell^2}\right) dx }=\frac{3 \ell}{8}$