Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The distance between the pair of parallel lines $ {{x}^{2}}+4xy+4{{y}^{2}}+3x+6y-4=0 $ is :

KEAMKEAM 2004

Solution:

$ \because $ The given equation of pair of parallel lines is $ {{x}^{2}}+4xy+4{{y}^{2}}+3x+6y-4=0 $
Here, $ a=1,b=4g=\frac{3}{2} $ and $ c=-4. $
Then, required distance $ =2\sqrt{\frac{{{g}^{2}}-ac}{a(a+b)}} $
$ =2\sqrt{\frac{\frac{9}{4}+4}{5}}=\frac{2.\sqrt{16+9}}{2.\sqrt{5}} $
$ =\frac{2\sqrt{25}}{2\sqrt{5}}=\frac{5}{\sqrt{5}}\times \frac{\sqrt{5}}{\sqrt{5}} $
$ =\sqrt{5} $