Thank you for reporting, we will resolve it shortly
Q.
The distance between the chords of contact of tangents to the circle $x^2+y^2+2 g x+2 f y+c=0$ from the origin and from the point $( g , f )$ is -
Conic Sections
Solution:
Equation of $AB : gx +f y + c =0 \ldots \ldots$..(i)
Equation of $CD : gx +f y + g ( x + g )+f( y +f)+ c =0$
$gx +f y +\frac{ g ^2+f^2+ c }{2}=0 \text {.....(ii) }$
Distance between $AB$ & $CD$ will be
$\left|\frac{\frac{g^2+f^2-c}{2}}{\sqrt{g^2+f^2}}\right|=\frac{g^2+f^2-c}{2 \sqrt{g^2+f^2}}$