Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The displacements of two particles of same mass executing SHM are represented by the equations $ {{x}_{1}}=4\sin \left( 10t+\frac{\pi }{6} \right) $ and $ {{x}_{2}}=5\cos (\omega t) $ The value of co for which the energies of both the particles remain same is

ManipalManipal 2012Oscillations

Solution:

The equation of displacement
$ {{x}_{1}}=4\sin \left( 10t+\frac{\pi }{6} \right) $
The energy of this equation
$ {{E}_{1}}=\frac{1}{2}mw_{1}^{2}a_{1}^{2} $
$ =\frac{1}{2}m\times 10\times 10\times 4\times 4 $
The second equation of displacement
$ {{x}_{2}}=5\cos (\omega t) $
The energy of this equation
$ {{E}_{2}}=\frac{1}{2}m\omega _{2}^{2}a_{2}^{2} $
$ =\frac{1}{2}m\omega _{2}^{2}\times 5\times 5 $
According to question
$ \because $ $ {{E}_{1}}={{E}_{2}} $
$ \therefore $ $ \frac{1}{2}m\omega _{2}^{2}\times 5\times 5=\frac{1}{2}m\times 10\times 10\times 4\times 4 $
$ \omega _{2}^{2}=\frac{10\times 10\times 4\times 4}{5\times 5} $
$ \omega _{2}^{2}=2\times 2\times 4\times 4 $
Or $ {{\omega }_{2}}=\sqrt{2\times 2\times 4\times 4} $
$ =2\times 4=8 $ unit