The displacement of the particle is given by
$x=A \sin (-2 \omega t)+B \sin ^{2} \omega t$
$=-A \sin 2 \omega t+\frac{B}{2}(1-\cos 2 \omega t)$
$=-\left(A \sin 2 \omega t+\frac{B}{2} \cos 2 \omega t\right)+\frac{B}{2}$
This motion represents $S H M$ with an amplitude
$\sqrt{A^{2}+\frac{B}{4}}$ and mean position
$\sqrt{\frac{B}{2}}$.