Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The directrix of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ is:

Jharkhand CECEJharkhand CECE 2004

Solution:

If the equation of hyperbola is
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$,
then equation of directrices are $x=\pm \frac{a}{e}$.
Given equation of hyperbola be $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$
Here, $a^{2}=9, b^{2}=4$
$ \therefore $ $e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{4}{9}} $
$\therefore $ Equation of directrices,
$x=\pm \frac{a}{e}=\pm \frac{9}{\sqrt{13}}$