Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The direction (θ) of vec E at point P due to uniformly charged finite rod will be <img class=img-fluid question-image alt=image src=https://cdn.tardigrade.in/img/question/physics/dbe1f3ef467df77ef39b358dcfa8a509-.png />
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The direction $(\theta)$ of $\vec{ E }$ at point $P$ due to uniformly charged finite rod will be
Electric Charges and Fields
A
At angle $30^{\circ}$ from $X$ -axis
33%
B
At angle $45^{\circ}$ from X-axis
41%
C
At angle $60^{\circ}$ from X-axis
16%
D
None of these
10%
Solution:
$E _{ x }=\frac{\lambda}{4 \pi \varepsilon_{0} x }[\sin \alpha+\sin \beta]$
$E _{ x }=\frac{\lambda}{4 \pi \varepsilon_{0} d }\left[0+\sin 60^{\circ}\right.$
$E _{ x }=\frac{\lambda}{4 \pi \varepsilon_{0} d }\left[0+\frac{\sqrt{3}}{2}\right]=\frac{\sqrt{3} \lambda}{8 \pi \varepsilon_{0} d }$
Similarly, $E_{y}=\frac{x}{4 \pi \varepsilon_{0} d}\left[\cos 0^{\circ}+\cos 60^{\circ}\right]$
$E_{y}=\frac{\lambda}{4 \pi \varepsilon_{0} d}\left[1+\frac{1}{2}\right]$
$E_{x}=\frac{\sqrt{3} \lambda}{8 \pi \varepsilon_{0} d}, E_{y}=\frac{3 \lambda}{8 \pi \varepsilon_{0} d}$
$\tan \theta=\frac{E_{y}}{E_{x}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta=30^{\circ}$