Thank you for reporting, we will resolve it shortly
Q.
The direction cosines of a line passing through two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are
Three Dimensional Geometry
Solution:
$P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$
$\therefore $ Direction ratios of line $PQ=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$
$\Rightarrow $ direction cosine of $PQ =$
$\bigg[\frac{x_{2}-x_{1}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}$,
$\frac{y_{2}-y_{1}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}$,
$\frac{z_{2}-z_{1}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}\bigg]$
$=\left[\frac{x_{2}-x_{1}}{PQ}, \frac{y_{2}-y_{1}}{PQ}, \frac{z_{2}-z_{1}}{PQ}\right]$
where $PQ=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$