Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The dimensions of torque are same as that of

MHT CETMHT CET 2019Physical World, Units and Measurements

Solution:

Torque is expressed as,
$\tau=$ force $(F) \times$ perpendicular distance $(r)$
So, $[\tau] =[F] \times[r]=\left[ MLT ^{-2}\right][ L]$
$=\left[ ML ^{2} T ^{-2}\right]$
Now, the dimension of moment of force $+$ force $\times$ distance
$= \left[M L T^{-2}\right] \times\left[L^{1}\right]=\left[M L^{2} T^{-2}\right].$
(b) Dimension of pressure $=$ Force $\times[\text { Area }]^{-2}$
$=\left[ MLT ^{-2}\right] \times\left[ L ^{-2}\right]=\left[ ML ^{-1} T ^{-2}\right]$
(c) Dimension of acceleration $=\left[ M ^{0} L ^{1} T ^{-2}\right]$
(d) Dimension of impulse $=$ [Force] $x$ [time]
$=\left[M L T^{-2}\right]\left[T^{1}\right]=M L T^{-1}$
As, the torque has dimension $\left[ ML ^{2} T ^{-2}\right],$
which is correctly matched by the dimensions of moment of force.
So, option (a) is correct.