Thank you for reporting, we will resolve it shortly
Q.
The differential equation satisfied by the function $y = \sqrt{\sin \, x + \sqrt{\sin \, x + \sqrt{\sin \, x + .....\infty}}}$ is
Continuity and Differentiability
Solution:
$y = \sqrt{\sin \, x + \sqrt{\sin \, x + \sqrt{\sin \, x + .....\infty}}}$
$\Rightarrow \:\: y = \sqrt{sin \, x + y} \Rightarrow \, y^2 = \sin \, x + y $
On differentiating both sides, we get
$2y \frac{dy}{dx} =\cos x+ \frac{dt}{dx} \Rightarrow \frac{dy}{dx} \left(2y -1\right)=\cos x $