Thank you for reporting, we will resolve it shortly
Q.
The differential equation of all ‘Simple Harmonic Motions’ of given period $\frac{2\pi}{n}$ is
Differential Equations
Solution:
The displacement $x$ for all $S.H.M.$ is given by
$x=a\,cos\left(nt+b\right)$
$\Rightarrow \frac{dx}{dt}=-na\,sin\left(nt+b\right)$
$\Rightarrow \frac{d^{2}x}{dt^{2}}=-n^{2}a\,cos\left(nt+b\right)$
$\Rightarrow \frac{d^{2}x}{dt^{2}}=-n^{2}x$
$\Rightarrow \frac{d^{2}x}{dt^{2}}+n^{2}x=0$