Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The differential equation of all ellipses with centres at the origin and the ends of one axis of symmetry is at (? 1,0), is

JamiaJamia 2015

Solution:

Let the ends of other axis of symmetry be $ (0,\pm a) $ . Then, the equation of the ellipse is $ {{x}^{2}}+\frac{{{y}^{2}}}{{{a}^{2}}}=1 $ $ \Rightarrow $ $ {{a}^{2}}{{x}^{2}}+{{y}^{2}}={{a}^{2}} $ ...(i) On differentiating both sides w.r.t. x, we get $ 2{{a}^{2}}x+2y\frac{dy}{dx}=0 $ $ \Rightarrow $ $ {{a}^{2}}=-\frac{y}{x}.\frac{dy}{dx} $ ??? (ii) On eliminating $ {{a}^{2}} $ from Eqs. (i) and (ii), we get $ -y\frac{dy}{dx}+{{y}^{2}}=-\frac{y}{x}.\frac{dy}{dx} $ $ \Rightarrow $ $ ({{x}^{2}}-1)\frac{dy}{dx}-xy=0 $