Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The determinant $\Delta=\begin{vmatrix} a l+a^{\prime} l^{\prime} & a m+a^{\prime} m^{\prime} & a n+a^{\prime} n^{\prime} \\ b l+b^{\prime} l^{\prime} & b m+b^{\prime} m^{\prime} & b n+b^{\prime} n^{\prime} \\ c l+c^{\prime} l^{\prime} & c m+c^{\prime} m^{\prime} & c n+c^{\prime} n^{\prime} \end{vmatrix}$ is equal to

Determinants

Solution:

Write $\Delta=l \Delta_1+l^{\prime} \Delta_2$, where
$\Delta_1 =\begin{vmatrix}a & a m+a^{\prime} m^{\prime} & a n+a^{\prime} n^{\prime} \\b & b m+b^{\prime} m^{\prime} & b n+b^{\prime} n^{\prime} \\c & c m+c^{\prime} m^{\prime} & c n+c^{\prime} n^{\prime}\end{vmatrix} \text { and } $
$\Delta_2 =\begin{vmatrix}a^{\prime} & a m+a^{\prime} m^{\prime} & a n+a^{\prime} n^{\prime} \\b^{\prime} & b m+b^{\prime} m^{\prime} & b n+b^{\prime} n^{\prime} \\c^{\prime} & c m+c^{\prime} m^{\prime} & c n+c^{\prime} n^{\prime}\end{vmatrix}$
In $\Delta_1$ apply $C_2 \rightarrow C_2-m C_1, C_3 \rightarrow C_3-n C_1$ to obtain
$\Delta_1=\begin{vmatrix}a & a^{\prime} m^{\prime} & a^{\prime} n^{\prime} \\b & b^{\prime} m^{\prime} & b^{\prime} n^{\prime} \\c & c^{\prime} m^{\prime} & c^{\prime} n^{\prime}\end{vmatrix}=0$
Similarly $\Delta_2=0$. Thus, $\Delta=0$