Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The determinant $\begin{vmatrix}b^{2}-ab&b-c&bc-ac\\ ab-a^{2}&a-b&b^{2}-ab\\ bc-ac&c-a&ab-a^{2}\end{vmatrix}$ is used to

Determinants

Solution:

Operating $C_1 \to C_1 + (a - b) C_2 - C_3$, we get
$\begin{vmatrix}b^{2}-ab&b-c&bc-ac\\ ab-a^{2}&a-b&b^{2}-ab\\ bc-ac&c-a&ab-a^{2}\end{vmatrix} $
$= \begin{vmatrix}0&b-c&bc-ac\\ 0&a-b&b^{2}-ab\\ 0&c-a&ab-a^{2}\end{vmatrix} =0$