Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The derivative of $tan^{-1} \bigg(\frac{sin x - cos x}{sin x + cos x}\bigg),$with respect to $\frac{x}{2}, $where $x \in \bigg(0, \frac{\pi}{2}\bigg)$ is :

JEE MainJEE Main 2019Continuity and Differentiability

Solution:

f(x)= $tan^{-1} \bigg(\frac{sin x - cos x}{sin x + cos x}\bigg)$
$= tan^{-1} \bigg(\frac{tan x -1 }{tan x +1}\bigg) = tan^{-1} \bigg(tan\bigg(x - \frac{\pi}{4}\bigg)\bigg)$
$\because x - \frac{\pi}{4} \, \in \bigg( - \frac{\pi}{4}, \frac{\pi}{4}\bigg)$
$\therefore \, \, \, f(x) = x - \frac{\pi}{4}$
$\Rightarrow $ its derivative w.r.t. $\frac{x}{2} \, is \, \frac{1}{1/2} = 2$