Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The derivative of $cosec^{-1} \left(\frac{1}{2x\sqrt{1-x^{2}}}\right) w.r.t \sqrt{1-x^{2}}$ is

Limits and Derivatives

Solution:

Put $x = \sin\theta$
Let $ y = cosec^{-1} \left(\frac{1}{2x \sqrt{1-x^{2}}}\right)$
$ = cosec ^{-1} \left(\frac{1}{2\sin \theta \cos\theta}\right) = cosec^{-1} $
$\left(cosec 2 \theta\right) = 2 \theta$
$ \therefore \frac{dy}{dz} = \frac{dy/d\theta}{dz/d\theta} = \frac{2}{- \sin\theta} = -\frac{2}{x}$
$ z = \sqrt{1-x^{2}} = \sqrt{1-\sin^{2}\theta} = \cos\theta $