Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The derivative of $\cos^{-1} (2x^2 - 1)$ w.r.t $\cos^{-1} x$ is

KCETKCET 2017Continuity and Differentiability

Solution:

Let $u=\cos ^{-1}\left(2 x^{2}-1\right)$ and $v=\cos ^{-1} \,x$
Now, $u=\cos ^{-1}\left(2 x^{2}-1\right)$
Put $x=\cos \theta$
$\therefore \, u=\cos ^{-1}\left(2 \cos ^{2} \theta-1\right)$
$=\cos ^{-1}(\cos 2 \theta)$
$=2 \theta=2 \cos ^{-1} \,x$
Again, $\frac{d u}{d v}=\frac{\left(\frac{d u}{d x}\right)}{\left(\frac{d v}{d x}\right)}$
$=\frac{\frac{d}{d x}\left(2 \cos ^{-1} x\right)}{\frac{d}{d x}\left(\cos ^{-1} x\right)}$
$=\frac{\left(-\frac{2}{\sqrt{1-x^{2}}}\right)}{\left(\frac{-1}{\sqrt{1-x^{2}}}\right)}=2$