Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ with respect to $\cos ^{-1} x$ is

Solution:

Let $u=\cos ^{-1}\left(2 x^{2}-1\right)$
$\frac{d u}{d x}=\frac{-1}{\sqrt{1-\left(2 x^{2}-1\right)^{2}}} 4 x=\frac{-4 x}{\sqrt{4 x^{2}\left(1-x^{2}\right)}}$
$=\frac{-4 x}{2 x \sqrt{1-x^{2}}}=\frac{-2}{\sqrt{1-x^{2}}}$
$v=\cos ^{-1} x$
$\frac{d v}{d x}=-1 / \sqrt{1-x^{2}}$
$\frac{d u}{d v}=\frac{-2 / \sqrt{1-x^{2}}}{-1 / \sqrt{1-x^{2}}}=2$