Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The derivative of $2 x+3 y=\sin y$ is

Continuity and Differentiability

Solution:

Given, $2 x+3 y=\sin y$
On differentiating both sides w.r.t. $x$, we get
$\frac{d}{d x}(2 x+3 y)=\frac{d}{d x}(\sin y) $
$\Rightarrow 2+3 \frac{d y}{d x}=\cos y \frac{d y}{d x} $
$\Rightarrow 3 \frac{d y}{d x}-\cos y \frac{d y}{d x}=-2 $
$\Rightarrow (3-\cos y) \frac{d y}{d x}=-2$
$ \Rightarrow \frac{d y}{d x}=\frac{2}{\cos y-3}$