Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The derivate of $(\log x)^{\sin x}$ with respect to $\cos x$ at $x=\frac{\pi}{2}$ is

TS EAMCET 2021

Solution:

$y=(\log x)^{\sin x} $
$ \log y=\sin x \cdot \log (\log x)$
$ \frac{1}{y} \frac{d y}{d x}=\sin x \cdot\left(\frac{1}{\log x}\right)\left(\frac{1}{x}\right)+\log (\log x) \cos x$
$ \text { At } x=\frac{\pi}{2},\left[\frac{1}{\log \left(\frac{\pi}{2}\right)}\right] y^{\prime}=\frac{2}{\pi}\left[\frac{1}{\log \left(\frac{\pi}{2}\right)}\right]=\frac{2}{\pi} \text { Let } t=\cos x$
$d t / d x=-\sin x$
$ \text { At } x=\frac{\pi}{2}, \frac{d t}{d x}=-1$
$ \therefore \frac{d y}{d x}=\frac{\left(\frac{2}{\pi}\right)}{-1}=\frac{-2}{\pi} $