Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The de-Broglie wavelength of a proton (charge $ =1.6\times {{10}^{-19}}C $ .mass $ =1.6\times {{10}^{-27}}kg $ ) accelerated through a potential difference of $1 \,kV$ is

ManipalManipal 2012Dual Nature of Radiation and Matter

Solution:

According to de-Broglie hypothesis
$ \lambda =\frac{h}{p} $
$ =\frac{h}{\sqrt{2mE}}=\frac{h}{\sqrt{2mqV}} $
$ \therefore $ $ \lambda =\frac{6.6\times {{10}^{-34}}}{\sqrt{2\times (1.6\times {{10}^{-27}})(1.6\times {{10}^{-19}})\times 1000}} $
$ =\frac{6.6\times {{10}^{-34}}}{7.16\times {{10}^{-22}}} $
$ =0.9\times {{10}^{-12}}m $