$de$ -Broglie wavelength $(\lambda)$ of a particle is related to its momentum $(p)$ as, $\lambda=\frac{h}{p}$
where, $h$ is Planck's constant.
or $\,\,\, \lambda=\frac{h}{m v} \,\,\,\,[\because p=m v]$
or $\,\,\, \lambda=\frac{h}{m \frac{v}{t} \cdot t}=\frac{h}{m a \cdot t}=\frac{h}{F \cdot t} \,\,\,[\because F=m a]$
$\Rightarrow \lambda$ is inversely proportional to impulse $(F)$