Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The correct order in which the dimension of Length increases in the following physical quantities is?

EAMCETEAMCET 2004

Solution:

For dimension of permittivity is given by $ \because $ $ F=\frac{1}{4\pi {{\varepsilon }_{0}}}\times \frac{{{q}_{1}}{{q}_{2}}}{{{r}^{2}}} $ or $ {{\varepsilon }_{0}}=\frac{1\times {{q}_{1}}{{q}_{2}}}{F\times 4\pi {{r}^{2}}} $ Dimensions of $ [{{\varepsilon }_{0}}]=\frac{[IT\times IT]}{[ML{{T}^{-2}}][{{L}^{2}}]} $ $ =[{{M}^{-1}}{{L}^{-3}}{{T}^{4}}{{I}^{2}}] $ For dimensions of resistance $ \because $ $ R=\frac{V}{I}=\frac{W}{QI}=\frac{W}{ITI} $ $ \left( \begin{align} & \because \,V=\frac{W}{Q} \\ & Q=IT \\ \end{align} \right) $ $ =\frac{[M{{L}^{2}}{{T}^{-2}}]}{[{{I}^{2}}T]}=[M{{L}^{2}}{{T}^{-3}}{{I}^{-2}}] $ For dimensions of magnetic permeability $ \because $ $ F=\frac{{{\mu }_{0}}}{2\pi }\times \frac{{{I}_{1}}{{I}_{1}}l}{r} $ or $ {{\mu }_{0}}=\frac{F\times 2\pi r}{{{I}_{1}}{{I}_{2}}l} $ Dimensions of $ [{{\mu }_{0}}]=\frac{[ML{{T}^{-2}}][L]}{[{{I}^{2}}][L]}=[ML{{T}^{-1}}{{I}^{-2}}] $ For dimensions of stress $ \because $ $ Stress=\frac{force}{area} $ $ =\frac{[ML{{T}^{-2}}]}{[{{L}^{2}}]}=[M{{L}^{-1}}{{T}^{-2}}] $