Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The correct order in which the dimension of Length increases in the following physical quantities is?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The correct order in which the dimension of Length increases in the following physical quantities is?
EAMCET
EAMCET 2004
A
A, B, C, D
B
D, C, B, A
C
A, D,
D
C, B, C, A
Solution:
For dimension of permittivity is given by $ \because $ $ F=\frac{1}{4\pi {{\varepsilon }_{0}}}\times \frac{{{q}_{1}}{{q}_{2}}}{{{r}^{2}}} $ or $ {{\varepsilon }_{0}}=\frac{1\times {{q}_{1}}{{q}_{2}}}{F\times 4\pi {{r}^{2}}} $ Dimensions of $ [{{\varepsilon }_{0}}]=\frac{[IT\times IT]}{[ML{{T}^{-2}}][{{L}^{2}}]} $ $ =[{{M}^{-1}}{{L}^{-3}}{{T}^{4}}{{I}^{2}}] $ For dimensions of resistance $ \because $ $ R=\frac{V}{I}=\frac{W}{QI}=\frac{W}{ITI} $ $ \left( \begin{align} & \because \,V=\frac{W}{Q} \\ & Q=IT \\ \end{align} \right) $ $ =\frac{[M{{L}^{2}}{{T}^{-2}}]}{[{{I}^{2}}T]}=[M{{L}^{2}}{{T}^{-3}}{{I}^{-2}}] $ For dimensions of magnetic permeability $ \because $ $ F=\frac{{{\mu }_{0}}}{2\pi }\times \frac{{{I}_{1}}{{I}_{1}}l}{r} $ or $ {{\mu }_{0}}=\frac{F\times 2\pi r}{{{I}_{1}}{{I}_{2}}l} $ Dimensions of $ [{{\mu }_{0}}]=\frac{[ML{{T}^{-2}}][L]}{[{{I}^{2}}][L]}=[ML{{T}^{-1}}{{I}^{-2}}] $ For dimensions of stress $ \because $ $ Stress=\frac{force}{area} $ $ =\frac{[ML{{T}^{-2}}]}{[{{L}^{2}}]}=[M{{L}^{-1}}{{T}^{-2}}] $