Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The coordinates of the vertices of an equilateral triangle cannot be all

Straight Lines

Solution:

Let $A\left(x_1, y_1\right), B\left(x_2, y_2\right)$ and $C\left(x_3, y_3\right)$ be the vertices of a $\triangle A B C$. If possible let $x_1, y_1, x_2, y_2, x_3, y_3$ be all rational.
Now, area of $\triangle A B C$
$=\frac{1}{2}\left|x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right|$
$ =$ Rational ......(i)
Since, $\triangle A B C$ is equilateral.
$\therefore $ Area of $ \triangle A B C =\frac{\sqrt{3}}{4}(\text { side })^2$
$ =\frac{\sqrt{3}}{4}(A B)^2 $
$ =\frac{\sqrt{3}}{4}\left\{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\right\} $
$ =$ Irrational ........(ii)
From Eqs. (i) and (ii), we get
Rational $=$ Irrational
which is contradiction.
Hence, $x_1, y_1, x_2, y_2, x_3, y_3$ cannot all be rational.