Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The coordinates of the center of mass of the following quarter circular arc are

Question

NTA AbhyasNTA Abhyas 2020

Solution:

Consider a small element as shown in the diagram

Solution

$dm=\lambda Rd\theta =\frac{2 m}{\pi }d\theta $
$x_{c m}=\frac{1}{m}\displaystyle \int _{0}^{\frac{\pi }{2}} R cos \theta \frac{2 m}{\pi }d\theta $
$x_{c m}=\frac{2 R}{\pi }\displaystyle \int _{0}^{\frac{\pi }{2}} cos \theta d \theta =\frac{2 R}{\pi }\left[sin ⁡ \pi / 2 - sin ⁡ 0\right]=\frac{2 R}{\pi }$
Similarly
$y_{c m}=\frac{1}{m}\displaystyle \int _{0}^{\frac{\pi }{2}} R sin \theta \frac{2 m}{\pi }d\theta $
$y_{c m}=\frac{2 R}{\pi }\displaystyle \int _{0}^{\frac{\pi }{2}} sin \theta d \theta =\frac{2 R}{\pi }\left[- cos ⁡ \pi / 2 - \left(\right. - cos ⁡ 0 \left.\right)\right]=\frac{2 R}{\pi }$