Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The coordinates of the center of mass of the following quarter circular arc are <img class=img-fluid question-image alt=Question src=https://cdn.tardigrade.in/q/nta/p-4ocayyzvkjdq.png />
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The coordinates of the center of mass of the following quarter circular arc are
NTA Abhyas
NTA Abhyas 2020
A
$\left(\frac{r}{2} , \frac{r}{2}\right)$
0%
B
$\left(\frac{2 r}{3} , \frac{2 r}{3}\right)$
0%
C
$\left(\frac{2 r}{\pi } , \frac{2 r}{\pi }\right)$
100%
D
$\left(\frac{4 r}{\pi } , \frac{4 r}{\pi }\right)$
0%
Solution:
Consider a small element as shown in the diagram
$dm=\lambda Rd\theta =\frac{2 m}{\pi }d\theta $
$x_{c m}=\frac{1}{m}\displaystyle \int _{0}^{\frac{\pi }{2}} R cos \theta \frac{2 m}{\pi }d\theta $
$x_{c m}=\frac{2 R}{\pi }\displaystyle \int _{0}^{\frac{\pi }{2}} cos \theta d \theta =\frac{2 R}{\pi }\left[sin \pi / 2 - sin 0\right]=\frac{2 R}{\pi }$
Similarly
$y_{c m}=\frac{1}{m}\displaystyle \int _{0}^{\frac{\pi }{2}} R sin \theta \frac{2 m}{\pi }d\theta $
$y_{c m}=\frac{2 R}{\pi }\displaystyle \int _{0}^{\frac{\pi }{2}} sin \theta d \theta =\frac{2 R}{\pi }\left[- cos \pi / 2 - \left(\right. - cos 0 \left.\right)\right]=\frac{2 R}{\pi }$