Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The coordinate of the points which trisect the line segment joining the points A(2,1,-3) and B(5,-8,3), are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The coordinate of the points which trisect the line segment joining the points $A(2,1,-3)$ and $B(5,-8,3)$, are
Introduction to Three Dimensional Geometry
A
$(3,-2,-1)$ and $(4,-5,1)$
B
$(3,2,1)$ and $(4,5,2)$
C
$(-3,5,1)$ and $(3,4,-5)$
D
None of the above
Solution:
Let $R_1$ and $R_2$ are the points with coordinates $\left(x_1, y_1, z_1\right)$ and $\left(x_2, y_2, z_3\right)$ which trisect the line segment $A B$.
Now, $A R_1: R_1 B=1: 2$
$\Rightarrow x_1 =\frac{1 \times 5+2 \times 2}{1+2}=\frac{9}{3}=3$
$y_1 =\frac{1 \times(-8)+2 \times 1}{1+2}=\frac{-6}{3}=-2$
and $ z_1=\frac{1 \times 3+2 \times-3}{1+2}=\frac{-3}{3}=-1 $
$\therefore R_1=(3,-2,-1)$
Similarly, $A R_2: R_2 B=2: 1$
$\Rightarrow x_2=\frac{2 \times 5+1 \times 2}{1+2}=\frac{12}{3}=4$
and $ y_2=\frac{2 \times(-8)+1 \times 1}{1+2}=\frac{-15}{3}=-5 $
$z_2=\frac{2 \times 3+1 \times(-3)}{1+2}=\frac{3}{3}=1$
$\therefore$ Coordinates of $R_2$ are $(4,-5,1)$.