Thank you for reporting, we will resolve it shortly
Q.
The complex number $\frac {(-\sqrt3+3i) (1-i)}{(3+\sqrt{3i})(i)(\sqrt{3}+\sqrt{3i})}$ when represented in the Argand diagram lies
KCETKCET 2006Complex Numbers and Quadratic Equations
Solution:
Let $z=\frac{(-\sqrt{3}+3 i)(1-i)}{(3+\sqrt{3} i) i(\sqrt{3}+\sqrt{3} i)}$
$=\frac{1}{\sqrt{3}}\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right) $
$=\frac{1}{\sqrt{3}}\left(\frac{1-1-2 i}{1+1}\right) $
$=-\frac{i}{\sqrt{3}}$
The complex number $z$ is represented on $y$ -axis (imaginary axis).