Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The complete combustion of $2.40 \,g$ of a compound of carbon, hydrogen and oxygen yielded $5.46 \,g$ of $CO _{2}$ and $2.23 \,g \,H _{2} O .$ When $8.69\, g$ of the compound was dissolved in $281 \,g$ of water, the freezing point depression was found to be $0.97^{\circ} C$. Thus, molecular formula of the organic compound is $\left[K_{f}\left( H _{2} O \right)=1.86^{\circ} mol ^{-1} \,kg \right]$

Solutions

Solution:

$\underset{12 g }{\text { Carbon }} \stackrel{[ O ]}{\longrightarrow } CO _{2}$

$C \%=\frac{12 \times 100 \times \text { mass of } CO _{2}}{44 \times mass \text { of substance }}$

$=\frac{12 \times 100 \times 5.46}{44 \times 2.40}$

$=62.05 \%$

$2 H \underset{ g }{\stackrel{[ O ]}{\longrightarrow }} \underset{18 g }{ H _{2} O }$

$H \%=\frac{2 \times \text { mass of } H _{2} O \times 100}{18 \times \text { mass of substance }}$

$=\frac{2 \times 2.23 \times 100}{18 \times 2.40}$

$=10.32 \%$

Oxygen (by difference) $=100-(62.05+10.32)$

$=27.63 \%$

Element % Moles Ratio
C 62.05 5.17 3
H 10.32 10.32 6
O 27.63 1.73 1


Empirical formula $= C _{3} H _{6} O$

$\Delta T_{f}=\frac{1000 K_{f} w_{1}}{m_{1} w_{2}}$

$\therefore m_{1}=\frac{1000 K_{f} w_{1}}{w_{2} \Delta T_{f}}$

$m_{1}($ solute $)=\frac{1000 \times 1.86 \times 8.69}{281 \times 0.97}=59.3$

$m_{1}\left( C _{3} H _{6} O \right)=58$

Thus, solute is $C _{3} H _{6} O$.