Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The coefficient of $x^n$ in the expansion of
($1 - 2x + 3x^{2} - 4x^{3} + ...$ to $\infty$)$^{-n}$ is

Binomial Theorem

Solution:

We have, ($1 - 2x + 3x^{2} - 4x^{3} + ...$ to $\infty$)$^{-n}$
$= \left[\left(1+x\right)^{-2}\right]^{-n} = \left(1+x\right)^{2n}$
$\therefore $ Coefficient of $x^{n} =\,{}^{2n}C_{n} = \frac{\left(2n\right)!}{\left(n!\right)^{2}}$.