Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The coefficient of $ x $ in $ f(x)=\left| \begin{matrix} x & 1+\sin x & \cos x \\ 1 & \log (1+x) & 2 \\ {{x}^{2}} & 1+{{x}^{2}} & 0 \\ \end{matrix} \right|,-1 < x\le 1, $ is

KEAMKEAM 2007Determinants

Solution:

$ f(x)=\left| \begin{matrix} x & 1+\sin x & \cos x \\ 1 & \log (1+x) & 2 \\ {{x}^{2}} & 1+{{x}^{2}} & 0 \\ \end{matrix} \right| $

$=x\{-2(1+{{x}^{2}})\}-(1+\sin x)(-2{{x}^{2}}) $ $ +\cos x \{1+{{x}^{2}}-{{x}^{2}}\log (1+x)\} $

$=-2x-2{{x}^{3}}+2{{x}^{2}}+2{{x}^{2}}\sin x $ $ +\cos x\{1+{{x}^{2}}-{{x}^{2}}\log (1+x)\} $

$ \therefore $ Coefficient of $ x $ in $ f(x)=-2 $