Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line $3x - 4y = m$ at two distinct points if

AIEEEAIEEE 2010Conic Sections

Solution:

Circle $x^2 + y^2 - 4x - 8y - 5 = 0$
Centre $= (2, 4)$, Radius $= \sqrt{4+16+5} = 5$
If circle is intersecting line $3x - 4y = m$
at two distinct points.
$\Rightarrow $ length of perpendicular from centre < radius
$\Rightarrow \frac{\left|6-16-m\right|}{5} < 5$
$\Rightarrow \left|10+m\right| < 25$
$\Rightarrow -25 < m + 10 < 25$
$\Rightarrow -35 < m < 15.$